
CHSM::machine(3) CHSMLanguage System CHSM::machine(3)

NAME
machine − CHSM machine class

SYNOPSIS
#define CHSM_MACHINE_ARGS /* ... */
#define CHSM_MACHINE_INIT /* ... */

namespace Concurrent_Hierarchical_State_Machine {

class machine {
public:

typedef state value_type;
typedef value_type const* const_pointer;
typedef value_type const& const_reference;

virtual ˜machine();

bool active() const;
virtual bool enter(event const &trigger = prime_);
virtual bool exit (event const &trigger = prime_);

class const_iterator {
public:

const_iterator();

const_reference operator* () const;
const_pointer operator−>() const;

const_iterator& operator++();
const_iterator operator++(int);

friend bool
operator==(const_iterator const&, const_iterator const&);
friend bool
operator!=(const_iterator const&, const_iterator const&);

};
const_iterator begin() const;
const_iterator end() const;

enum {
D_none = 0x00,
D_enex = 0x01,
D_event = 0x02,
D_alg = 0x04,
D_all = D_enex | D_event | D_alg

};

unsigned debug() const;
unsigned debug(unsigned);

void dump_state() const;
protected:

machine(CHSM_MACHINE_ARGS);
};

CHSM January21, 2010 1

CHSM::machine(3) CHSMLanguage System CHSM::machine(3)

}

DESCRIPTION
Themachine class is the base class for user-specified CHSMs.

Functions
virtual bool enter(event const &trigger = prime_)

virtual bool exit (event const &trigger = prime_)
Returnstrue only if the state was actually entered or exited, respectively. The trigger is a
reference to the event that is causing the state to be entered or exited. By default, it is an imple-
mentation-supplied, transitionless event used solely for this purpose. These functions can be over-
ridden in a derived class to alter the behavior of entrances and exits.

bool active() const
Returnstrue only if the root cluster, and thus the CHSM as a whole, is currently active. (See
chsm-c++(4).)

Debugging Functions
unsigned debug() const

Returns the current debugging state as an unsigned integer comprised of the bitwise or of the
debugging states.

unsigned debug(unsigned)
Sets the current debugging state as specified by the argument comprised of the bitwise or of the
debugging states.Debugging output goes to standard error. Returns the previous debugging state.
The debugging states are:

D_none None.

D_enex Reports state entrances and exits.

D_event Reports event queuing and dequeuing.

D_alg Reports progress during the event-broadcast algorithm.

D_all Reports all debugging information.

void dump_state() const
Dumps a printout of the current state to standard error that consists of each state’s name, one per
line, preceded by an asterisk only if it is active; a space otherwise.

Iterators
Theconst_iterator class is an iterator over the machine’s states. Itis in STL style. There is no (non-
const) iterator since the only thing that should affect a state’s state are events causing transitions.
Themachine member functionsbegin() andend() are used to returnconst_iterator s.

Derived Classes
The machine class can be derived from to add additional data members and members functions to a
CHSM. ThemacrosCHSM_MACHINE_ARGSandCHSM_MACHINE_INITare used in the derived class’s
constructor and shield the user from the ugly arguments lists used in the CHSM implementation.

Additional, trailing constructor arguments may be specified.Such arguments must be repeated in the
parameter-list in thechsm specification.

EXAMPLE
#include <chsm.h>

class my_stuff : public CHSM::machine {
public:

my_stuff(CHSM_MACHINE_ARGS, int arg) :
CHSM::machine(CHSM_MACHINE_INIT), mbr(arg) { }

protected: // make accessible to derived class
int mbr;

CHSM January21, 2010 2

CHSM::machine(3) CHSMLanguage System CHSM::machine(3)

};

%%
chsm<my_stuff> my_machine(int arg) is {

state s {
alpha -> t %{

mbr = 0; // note: it’s accessible
%};

}
// ...

}

%%
int main() {

my_machine m(42); // pass only additional argument(s)
}

NOTES
All lines of debugging output are preceded by the| character to make them easily distinguishable.

SEE ALSO
CHSM::cluster(3), CHSM::parent(3), CHSM::set(3), CHSM::state(3), chsm-c++(4), iterator(STL)

AUTHORS
Paul J. Lucas <paul@lucasmail.org>
Fabio Riccardi <fabio.riccardi@mac.com>

CHSM January21, 2010 3

