
CHSM::event(3) CHSMLanguage System CHSM::event(3)

NAME
ev ent − CHSM event class

SYNOPSIS
namespace Concurrent_Hierarchical_State_Machine {

class event {
public:

void operator()();
template<typename EventClass> bool is_type() const;
char const* name();

protected:
struct param_block {

param_block(event const&);
virtual ˜param_block();

};
};

class user_event : public event {
public:

struct param_block : event::param_block {
parameter declarations
param_block(event const&);
virtual ˜param_block();

};
void operator()(parameter declarations);
param_block* operator−>();

// inherited
char const* name();

};

bool operator==(event const&, event const&);
bool operator!=(event const&, event const&);

}

DESCRIPTION
Instances of theevent class, or classes derived therefrom, cause transitions to occur in a CHSM.

ev ent
The base event class. It is the base class for all user-specified events; it is also used directly forenter()
andexit() ev ents.

Member Functions
void operator()()

Broadcasts the event. (Seeuser_event::operator()() below for more information.)

template<typename EventClass> bool is_type()
Returnstrue only if the event is of the given event class.

char const* name()
Returns the name of the event.

user_event
A user_event is a class generated by thechsmc(1) compiler for user-specified events. For example, a user-
specified event alpha has a class namedalpha_event generated for it.

User events may have parameters. Theparam_block data members are the parameters of the event plus
all the parameters of all base events, if any, via inheritance, taken from event declarations in a CHSM

CHSM January21, 2010 1

CHSM::event(3) CHSMLanguage System CHSM::event(3)

description by thechsmc(1) compiler. For derived events, parameters are inherited in base-to-derived
order.

void operator()(parameter declarations)
Broadcasts the event with the specified parameters, if any.

param_block* operator−>()
Returns a reference to the parameter named on the right-hand-side.

GLOBAL FUNCTIONS
bool operator==(event const&, event const&)

bool operator!=(event const&, event const&)
Returnstrue only if the two giv en events are equal, or not equal, respectively. Because there is a
single instance of each event per CHSM, these functions testidentity rather than equality; hence
two events of the same name from different instances of a CHSM will not compare equal.

SEMANTICS
Broadcasting

Broadcasting an event that is already ‘‘in progress’’ does nothing; the event is not rebroadcast.Broadcast-
ing a base event of an event already ‘‘in progress’’ does nothing.

Preconditions
A precondition for an event is the logical-and of all base event preconditions, if any, evaluated in base-to-
derived order. Evaluation is ‘‘short-circuited’’ v ia the traditional semantics of the C++&& operator. If a
precondition is not satisfied, the event is not broadcast.

Finding Transitions
After an event has satisfied its precondition, all transitions on the given event out of currently-active states
have their conditions, if any, evaluated. For derived events, transitions are inherited in derived-to-base
order so that transitions on derived events will dominate those on base events.

EXAMPLE
#include <iostream>
using namespace std;

%%
chsm my_machine is {

event alpha;
event<alpha> beta(int n);
event<beta> gamma(char const *message);

state x {
alpha -> y %{

alpha(); // in progress -- does nothing
%};

}
state y {

beta -> z %{
alpha(); // does nothing since beta is-an alpha
cout << beta->n << endl; // access parameter

%};
}
state z {

gamma -> x %{
cout << gamma->n << endl; // inherited parameter
cout << gamma->message << endl;

%};
}

CHSM January21, 2010 2

CHSM::event(3) CHSMLanguage System CHSM::event(3)

}

%%
int main() {

my_machine m;
m.alpha(); // broadcast alpha

my_machine::alpha_event *e; // example of generated event class
e = &m.beta; // legal since beta is-an alpha

if (my_machine::beta_event *b = dynamic_cast<machine::beta_event*>(e))
(*b)(42); // broadcast beta with parameter

m.gamma(42, "hello, world"); // inherited parameters
}

SEE ALSO
chsmc(1), CHSM::state(3), chsm-c++(4)

AUTHORS
Paul J. Lucas <paul@lucasmail.org>
Fabio Riccardi <fabio.riccardi@mac.com>

CHSM January21, 2010 3

